当前位置:香港六合彩2019年全年资料 > 去模糊 >

用Keras搭建GAN:图像去模糊中的应用(附代码)

  这些只是对生成对抗网络的一个简单回顾,如果还是不够明白的话,可以参考完整介绍。

  Ian Goodfellow首次使用GAN模型是生成MNIST数据。 而本篇文章是使用生成对抗网络进行图像去模糊。因此生成器的输入不是噪声,而是模糊图像。

  数据集来自GOPRO数据,你可以下载精简版数据集(9GB),也可以下载完整版数据集(35GB)。其中包含了来自不同街道视角的人造模糊图像,根据不同的场景将数据集分在各个子文件夹中。

  我们先把图像分到 A (模糊)和 B (清晰)两个文件夹。这个 A&B 结构对应于原始文章pix2pix 。我创建了一个 自定义脚本来执行这个任务。 看看 README 后尝试一下吧。

  生成器要生成清晰图像,网络是基于ResNet blocks的,它可以记录对原始模糊图像操作的过程。原文还使用了基于UNet的版本,但我目前还没有实现。这两种结构都可以很好地进行图像去模糊。

  核心是采用9 个ResNet blocks对原始图像进行上采样。来看一下Keras上的实现!

  ResNet 层就是一个基本的卷积层,其中,输入和输出相加,形成最终输出。

  按照计划,用9个ResNet blocks对输入进行上采样。我们在输入到输出增加一个连接,然后除以2 来对输出进行归一化。

  判别器的目标就是要确定一张输入图片是否为合成的。因此判别器的结构采用卷积结构,而且是一个单值输出。

  最后一步就是建立完整的模型。这个GAN的一个特点就是输入的是真实图片而不是噪声 。因此我们就有了一个对生成器输出的直接反馈。

  第一个是感知损失,根据生成器输出直接可以计算得到。第一个损失保证 GAN 模型针对的是去模糊任务。它比较了VGG第一次卷积的输出。

  第二个损失是对整个模型输出计算的Wasserstein loss,计算了两张图像的平均差值。众所周知,这种损失可以提高生成对抗网络的收敛性。

  第一步是加载数据并初始化模型。我们使用自定义函数加载数据集,然后对模型使用 Adam 优化器。我们设置 Keras 可训练选项来防止判别器进行训练。

  然后我们进行epochs(一个完整的数据集通过了神经网络一次并且返回了一次的过程,称为一个epoch),并将整个数据集分批次(batches)。

  最后根据两者的损失,可以相继训练判别器和生成器。用生成器生成假的输入,训练判别器区别真假输入,并对整个模型进行训练。

  上面的输出结果都是我们用 Keras 进行 Deblur GAN 的结果。即使是对高度模糊,网络也可以减小模糊,产生一张具有更多信息的图片,使得车灯更加汇聚,树枝更加清晰。

  希望你们可以喜欢这篇关于生成对抗网络用于图像去模糊的文章。 你可以评论,关注我或者联系我。

  如果你对机器视觉感兴趣,我们还写过一篇用Keras实现基于内容的图像复原 。下面是生成对抗网络资源的列表。

http://mjlynchlaw.com/qumohu/188.html
点击次数:??更新时间2019-06-07??【打印此页】??【关闭
  • Copyright © 2002-2017 DEDECMS. 织梦科技 版权所有  
  • 点击这里给我发消息
在线交流 
客服咨询
【我们的专业】
【效果的保证】
【百度百科】
【因为有我】
【所以精彩】